Book Review: Spectral theory of Banach space operators
نویسندگان
چکیده
منابع مشابه
Weak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کاملNonwandering operators in Banach space
We introduce nonwandering operators in infinite-dimensional separable Banach space. They are new linear chaotic operators and are relative to hypercylic operators, but different from them. Firstly, we show some examples for nonwandering operators in some typical infinite-dimensional Banach spaces, including Banach sequence space and physical background space. Then we present some properties of ...
متن کاملSpectral Theory of Linear Operators—and Spectral Systems in Banach Algebras, By
Let A be a bounded operator on a Banach space X. A scalar λ is in the spectrum of A if the operator A − λ is not invertible. Case closed. What more is there to say? As anyone with the slightest exposure to operator theory will testify, there is so much out there that no book could come close to being comprehensive. What authors do in such situations is choose a small area or topic of interest t...
متن کاملComplex Banach Space of Bounded Linear Operators
Let X be a set, let Y be a non empty set, let F be a function from [: C, Y :] into Y , let c be a complex number, and let f be a function from X into Y . Then F ◦(c, f) is an element of Y X . We now state the proposition (1) Let X be a non empty set and Y be a complex linear space. Then there exists a function M1 from [: C, (the carrier of Y ) X :] into (the carrier of Y ) such that for every C...
متن کاملSemigroups of Operators in Banach Space
We begin with a definition Definition 1. A one-parameter family T (t) for 0 ≤ t < ∞ of bounded linear operators on a Banach space X is a C 0 (or strongly continuous) Semigroup on X if 1. T (0) = I (the identity on X). 2. T (t + s) = T (t)T (s) (semigroup property) 3. lim t↓0 T (t)v = v for all v ∈ X (This the Strong Continuity at t = 0, i.e., continuous at t = 0 in the strong operator topology)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1985
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-1985-15382-0